Cell Imaging

The Cell Imaging Facility provides training and consultation on the use of confocal microscopy, widefield automated microscopy, and software analysis tools for quantitative analysis of image data. The facility has locations across campus, each with confocal and widefield capabilities. There are several options for confocal microscopy of fixed or live samples, including Nikon A1R, Leica SP8 white light, Olympus FV1000s, Bruker Ultima 2 Photon and a Zeiss 880 Airyscan. We have a Nikon Ti automated microscopes with laser autofocus and stage incubators in addition to two Olympus widefield CCD systems. These instruments run using a variety of proprietary software platforms and some multifunctional image capture programs such as Metamorph, Micromanager, and Imaris software are available for 2D and 3D analysis of image data.

Web calendar for scheduling appointments: This system is core wide and uses the campus UNID system. Upon first login you will be asked for information and for which PI there is an authorized chartfield registered with the cores office. If you have problems logging in contact billing at billing@cores.utah.edu

Before working with us, please take the time to read our Microscopy Core Policies. To make a reservation to use our equipment or services, please go to resource.cores.utah.edu. Please arrange for a training appointment with core staff to become approved to use the instruments. Instruments are available 24/7 to appropriately trained users.

For questions, updates, and news check out our social media accounts!

Youtube Channel: @ U of U Microscopy or https://www.youtube.com/channel/UCTSL-YmOYtIfz34zzNRrF5A

Twitter Page: @UofUMicroscopy or https://twitter.com/UofUMicroscopy

Acknowledgments to the Cell Imaging Core

We would like to thank you for acknowledging the University of Utah Cell Imaging Core. This recognition allows us to highlight the impact of your work and demonstrates the important contributions the Cell Imaging Core makes to research across the University of Utah. The recognition our core receives from your acknowledgments also aids in receiving grants and further funding for equipment we can provide to our users.


Please mention in your published papers the use of instruments via the University of Utah Cell Imaging Core and any notable staff member.

We acknowledge Cell Imaging Core at the University of Utah for use of equipment (insert microscope(s) or instrument details here), and thank (insert any notable staff member – if desired) for their assistance.

Assisted Imaging:

Please mention in your published papers the associate of our staff who took your images for you.

We acknowledge Cell Imaging Core at the University of Utah for use of equipment (insert microscope(s) or instrument detail here), and thank (insert staff member-required) for their assistance in image acquisition.


Co-author acknowledgment, collaborations that assist with the methodologies and planning process of your experiment as well as instrument use. At this depth of assistance, this type of recognition is required.

A variety of instrumentation is available at the Cell Imaging Core.  Click on links below for further information on these systems.

HSC Building 585/586
Confocal Microscopes

Nikon A1R

Room 54

More Info

Schedule for Use

Prairie Multi Photon Confocal

Room 48B

More Info

Schedule for Use

Prairie Ultima 2 Photon Confocal

Room 48D

More Info

Schedule for Use

Zeiss 700

Room 56

More Info

Schedule for Use
Widefield Microscopes


Room 54

More Info

Schedule for Use
Slide Scanning

Axio Scan.Z1

Room 60


Schedule for Use
HCI Core Location

A variety of instrumentation is available at the HCI location. These include a Leica SP8 white light laser confocal and automated widefield.  Click on links below for further information on these systems.

Leica SP8 White light Laser Confocal:

Room 1480

More Info

Schedule for Use

Leica SP8 405-488-561-633 Laser Confocal:

Room 1440

More Info

Schedule for Use

Nikon Widefield Microscope

Room 1430

More Info

Schedule for Use

Data Analysis Workstation

Room 1470

More Info

Schedule for Use
Aline Wilmot Skaggs Biology Building


Room 230

Schedule for Use
Crocker Science Center

A variety of instrumentation is available at the CSC location at Room 032.  Click on links below for further information on these systems

Zeiss 880 Airy Scan:

Room 032

More Info

Schedule for Use

Olympus FV1000

Room 032

More Info

Schedule for Use


Room 32

More Info

Schedule for Use
James Sorenson Molecular Biotechnology Building

Olympus FV1000

Room 2136

More Info

Schedule for Use
E.E. Jones Medical Building

Confocal Microscope
Leica Spinning Disk

Room 5122

More Info

Schedule for Use

Widefield Microscope

Room 5100

More Info

Schedule for Use

ASB – Aline Wilmot Skaggs Biology Building: map

Number: 82
Code: ASB
Address: 259 S 1400 E Salt Lake City, UT 84112


CSC – Crocker Science Center: map

Number: 5
Code: CSC
Address: 1390 Presidents Cir Salt Lake City, UT 84112


EEJMRB – E.E. Jones Medical Research: map

Number: 565
Address: 15 N Medical Dr East Salt Lake City, UT 84112


HCI – Huntsman Cancer Institute: map

Number: 555
Code: HCI
Address: 2000 Circle of Hope Salt Lake City, UT 84103


HSC – Health Science Center: map

Number: 585
Code: RB LAB
Address: 30 N 2030 E Salt Lake City, UT 84112


SMBB – Sorenson Molecular Biotechnology (USTAR): map

Number: 151
Code: SMBB
Address: 36 S Wasatch Dr Salt Lake City, UT 84112

To Set Up a User Account:

Account Setup

Booking Calendar:

Booking Calendar
  1. Fill out and submit a Work Authorization form.  Work Authorization Form.
    • If you need help navigating the form, a ‘How to’ guide is available under the drop down menu labeled ‘Work Auth Forms
    • For additional questions please contact the administrative office at billing@cores.utah.edu
  2. All users must complete the online Laser Safety Training provided by EHS:  https://utah.bridgeapp.com/learner/courses/2d8ad69f/enroll. Upon completion, email your certificate to support.cellimaging@cores.utah.edu
  3. We recommend an initial half hour project consultation with Xiang or Mike.  This will help us ensure you obtain the best images possible from your samples.  This can be arranged with the booking calendar. Instructions below.
  4. We require 1-2 hours of microscope training prior to solo use of the microscopes.  Please schedule time with both the microscope you want to use and Xiang or Mike.  This can be arranged with the booking calendar. Instructions below.
  5. We suggest that you book time with staff for the start of your first imaging session.  We also suggest that you not book after hours imaging until you feel comfortable with the microscope.
  6. If you want assisted imaging instead of training, this should be booked like a training session, i.e., book both the microscope and staff.
  7. Booking on the calendar website
    • Login using your unid (ex. uxxxxxx) and cis password.
    • After logging in, the Cell Imaging Core calendar is located under ‘Resources’ and ‘Cell Imaging’
  8. Booking Consultation or Training
    • Each Staff member and microscope has a calendar that shows availability that you may book time for your use. Note that our staff have normal consultation hours at HCI, CSC and HSC. For any questions regarding our calendar system please email us at support.cellimaging@cores.utah.edu.
    • After booking staff member’s time, check the drop down option next to ‘Process’ to select the training location. In the ‘Description’ or ‘Service Needed’, please include information about your imaging needs (e.g., consultation, live cell imaging or SP8 Training).
    • For training or assisted imaging, also book simultaneous time on the microscope.
  9. Booking a Microscope
    • Book time with both the staff member and suggested microscope simultaneously for initial hardware and software training.
    • Once trained, use the calendar to book time to use the microscope.  Please note the cancelation policy below.
  10. Building access granted after full training is complete
    • HCI
      • Computer and building access forms will be provided
      • Submit forms per our instructions
    • HSC and CSC
      • You must then go in person with your UID card to our Administrative Office to gain card access to the building and rooms to which you have been granted permissions. To get to our Administrative Office (Skaggs Bldg 582, Room 250), enter from the South doors, go up the stairs to the second floor, the offices are straight down the hall. (Map)
    • SMBB
      • We will send your information to the SMBB building office.


If you have any more questions concerning this process please contact us at support.cellimaging@cores.utah.edu.

Calendar bookings must be deleted by the user 24 hours prior to the time reserved in order to avoid billing charges. Booking time cannot be altered or deleted and is non-refundable nor creditable if this time window is not met. The Cell Imaging Core is not liable if a user no longer needs their booking, if a user’s samples do not work, if a user cannot make their booking, etc. However, if an instrument is down, is offline, or is under maintenance all fees will be voided for that duration.

Users with overages or caught with unregistered time can be charged $100/h.

There are two tracks of training offered by the Cell Imaging Core

  1. Short time users: Patrons that plan on 20 hours or less of usage per year.
    1. Assisted Imaging
      1. Staff will image your samples exclusively with you. Your presence is required for an assessment consultation of your sample quality and image goals.
      2. Signature of a release form is required to insure the quality of samples and the resulting images.
      3. Acknowledgement in publications for the University of Utah Cell Imaging is a requirement for this type of extensive assistance.
  1. Long time users: Patrons that prefer in depth training for skill development with the goal of imaging yourself and to obtain rigorous understanding of software.
    1. Advanced training series
      1. Project consultation and basic training
      2. Advanced training for special software implementation (FRET, FRAP, live cell imaging, stitching, time lapse, ect.. )



  1. Almanzar, D. E., Gordon, S. G., Bristow, C., Hamrick, A., von Diezmann, L., Liu, H., & Rog, O. (2023). Meiotic DNA exchanges in C. elegans are promoted by proximity to the synaptonemal complex. Life Science Alliance, 6(4), e202301906. https://doi.org/10.26508/lsa.202301906
  2. Anderl, W. J., Pearson, N., Converse, M. I., Yu, S. M., & Monson, K. L. (2023). Strain-induced collagen denaturation is rate dependent in failure of cerebral arteries. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2023.04.032
  3. Ellis, K. E., Smihula, H., Ganguly, I., Vigato, E., Bervoets, S., Auer, T. O., Benton, R., Litwin-Kumar, A., & Caron, S. J. C. (2023). Evolution of connectivity architecture in the Drosophila mushroom body [Preprint]. Neuroscience. https://doi.org/10.1101/2023.02.10.528036
  4. Espino-Sanchez, T. J., Wienkers, H., Marvin, R. G., Nalder, S., García-Guerrero, A. E., VanNatta, P. E., Jami-Alahmadi, Y., Blackwell, A. M., Whitby, F. G., Wohlschlegel, J. A., Kieber-Emmons, M. T., Hill, C. P., & Sigala, P. A. (2023). Direct Tests of Cytochrome Function in the Electron Transport Chain of Malaria Parasites[Preprint]. Microbiology. https://doi.org/10.1101/2023.01.23.525242
  5. Ferrara, P. J., Reidy, P. T., Petrocelli, J. J., Yee, E. M., Fix, D. K., Mahmassani, Z. S., Montgomery, J. A., McKenzie, A. I., de Hart, N. M. M. P., & Drummond, M. J. (2023). Global deletion of CCL2 has adverse impacts on recovery of skeletal muscle fiber size and function and is muscle-specific. Journal of Applied Physiology. https://doi.org/10.1152/japplphysiol.00444.2022
  6. Hoffman, L. M., Jensen, C. C., & Beckerle, M. C. (2022). Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Molecular Biology of the Cell, 33(11), ar100. https://doi.org/10.1091/mbc.E22-02-0057
  7. Petrocelli, J. J., Hart, N. M. M. P. de, Lang, M. J., Yee, E. M., Ferrara, P. J., Fix, D. K., Chaix, A., Funai, K., & Drummond, M. J. (2023). Cellular senescence and disrupted proteostasis induced by myotube atrophy are prevented with low-dose metformin and leucine cocktail. Aging, 15. https://doi.org/10.18632/aging.204600
  8. Preston, A. J., Rogers, A., Sharp, M., Mitchell, G., Toruno, C., Barney, B. B., Donovan, L. N., Bly, J., Kennington, R., Payne, E., Iovino, A., Furukawa, G., Robinson, R., Shamloo, B., Buccilli, M., Anders, R., Eckstein, S., Fedak, E. A., Wright, T., … Abegglen, L. M. (2023). Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discovery, 9(1), Article 1. https://doi.org/10.1038/s41420-023-01348-7
  9. Rice, M. C., Little, J. H., Forrister, D. L., Machado, J., Clark, N. L., & Gagnon, J. A. (2023). Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage [Preprint]. Developmental Biology. https://doi.org/10.1101/2023.01.30.526370
  10. Sefton, E. M., Gallardo, M., Tobin, C. E., Collins, B. C., Colasanto, M. P., Merrell, A. J., & Kardon, G. (2022). Fibroblast-derived Hgf controls recruitment and expansion of muscle during morphogenesis of the mammalian diaphragm. ELife, 11, e74592. https://doi.org/10.7554/eLife.74592
  11. Simeone, C. A., Wilkerson, J. L., Poss, A. M., Banks, J. A., Varre, J. V., Guevara, J. L., Hernandez, E. J., Gorsi, B., Atkinson, D. L., Turapov, T., Frodsham, S. G., Morales, J. C. F., O’Neil, K., Moore, B., Yandell, M., Summers, S. A., Krolewski, A. S., Holland, W. L., & Pezzolesi, M. G. (2022). A dominant negative ADIPOQ mutation in a diabetic family with renal disease, hypoadiponectinemia, and hyperceramidemia. Npj Genomic Medicine, 7(1), Article 1. https://doi.org/10.1038/s41525-022-00314-z
  12. Wang, Y., Chiola, S., Yang, G., Russell, C., Armstrong, C. J., Wu, Y., Spampanato, J., Tarboton, P., Ullah, H. M. A., Edgar, N. U., Chang, A. N., Harmin, D. A., Bocchi, V. D., Vezzoli, E., Besusso, D., Cui, J., Cattaneo, E., Kubanek, J., & Shcheglovitov, A. (2022). Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-33364-z
  13. Xue, Q., Varady, S. R. S., Waddell, T. Q. A., Roman, M. R., Carrington, J., & Roh-Johnson, M. (2023). Lack of Paxillin phosphorylation promotes single-cell migration in vivo. Journal of Cell Biology, 222(3), e202206078. https://doi.org/10.1083/jcb.202206078
  14. Zhang, C., Jin, Y., Marchetti, M., Lewis, M. R., Hammouda, O. T., & Edgar, B. A. (2022). EGFR signaling activates intestinal stem cells by promoting mitochondrial biogenesis and β-oxidation. Current Biology. https://doi.org/10.1016/j.cub.2022.07.003


  1. Batot, G., Metcalf, C., Bell, L., Pauletti, A., Wilcox, K., & Bröer, S. (2022). A Model for Epilepsy of Infectious Etiology using Theiler’s Murine Encephalomyelitis Virus. Journal of Visualized Experiments. https://doi.org/10.3791/63673
  2. Cho, J. M., Park, S.-K., Kwon, O. S., La Salle, D. T., Cerbie, J., Fermoyle, C. C., Morgan, D., Nelson, A., Bledsoe, A., Bharath, L. P., Tandar, M., Kunapuli, S. P., Richardson, R. S., Anandh Babu, P. V., Mookherjee, S., Kishore, B. K., Wang, F., Yang, T., Boudina, S., … Symons, J. D. (2022). Activating P2Y1 receptors improves function in arteries with repressed autophagy. Cardiovascular Research, cvac061. https://doi.org/10.1093/cvr/cvac061
  3. Fadul, J., Zulueta-Coarasa, T., Slattum, G. M., Redd, N. M., Jin, M. F., Redd, M. J., Daetwyler, S., Hedeen, D., Huisken, J., & Rosenblatt, J. (2021). KRas-transformed epithelia cells invade and partially dedifferentiate by basal cell extrusion. Nature Communications, 12(1), 7180. https://doi.org/10.1038/s41467-021-27513-z
  4. Falekun, S., Sepulveda, J., Jami-Alahmadi, Y., Park, H., Wohlschlegel, J. A., & Sigala, P. A. (2021). Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites. ELife, 10, e71636. https://doi.org/10.7554/eLife.71636
  5. Ferrara, P. J., Verkerke, A. R. P., Maschek, J. A., Shahtout, J. L., Siripoksup, P., Eshima, H., Johnson, J. M., Petrocelli, J. J., Mahmassani, Z. S., Green, T. D., McClung, J. M., Cox, J. E., Drummond, M. J., & Funai, K. (2021). Low lysophosphatidylcholine induces skeletal muscle myopathy that is aggravated by high‐fat diet feeding. The FASEB Journal, 35(10). https://doi.org/10.1096/fj.202101104R
  6. Figueroa, K., Anderson, C. J., Paul, S., Dansithong, W., Gandelman, M., Scoles, D. R., & Pulst, S. M. (2022). Slc9a6 mutation causes Purkinje cell loss and ataxia in the shaker rat [Preprint]. Neuroscience. https://doi.org/10.1101/2022.03.28.486143
  7. Fix, D. K., Ekiz, H. A., Petrocelli, J. J., Mckenzie, A. M., Mahmassani, Z. S., O’Connell, R. M., & Drummond, M. J. (2021). Disrupted macrophage metabolic reprogramming in aged soleus muscle during early recovery following disuse atrophy. Aging Cell, 20(9). https://doi.org/10.1111/acel.13448
  8. Fix, D. K., Mahmassani, Z. S., Petrocelli, J. J., de Hart, N. M. M. P., Ferrara, P. J., Painter, J. S., Nistor, G., Lane, T. E., Keirstead, H. S., & Drummond, M. J. (2021). Reversal of deficits in aged skeletal muscle during disuse and recovery in response to treatment with a secrotome product derived from partially differentiated human pluripotent stem cells. GeroScience, 43(6), 2635–2652. https://doi.org/10.1007/s11357-021-00423-0
  9. Guillen, K. P., Fujita, M., Butterfield, A. J., Scherer, S. D., Bailey, M. H., Chu, Z., DeRose, Y. S., Zhao, L., Cortes-Sanchez, E., Yang, C.-H., Toner, J., Wang, G., Qiao, Y., Huang, X., Greenland, J. A., Vahrenkamp, J. M., Lum, D. H., Factor, R. E., Nelson, E. W., … Welm, A. L. (2022). A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nature Cancer, 3(2), 232–250. https://doi.org/10.1038/s43018-022-00337-6
  10. Happ, J. T., Arveseth, C. D., Bruystens, J., Bertinetti, D., Nelson, I. B., Olivieri, C., Hedeen, D. S., Zhu, J.-F., Capener, J. L., Bröckel, J. W., Vu, L., King, C. C., Ruiz-Perez, V. L., Veglia, G., Herberg, F. W., Taylor, S. S., & Myers, B. R. (2021). A PKA Inhibitor Motif within Smoothened Controls Hedgehog Signal Transduction. bioRxiv. https://doi.org/10.1101/2021.07.05.451193
  11. Hill, J. H., Massaquoi, M. S., Sweeney, E. G., Wall, E. S., Jahl, P., Bell, R., Kallio, K., Derrick, D., Murtaugh, L. C., Parthasarathy, R., Remington, S. J., Round, J. L., & Guillemin, K. (2022). A microbiota membrane disrupter disseminates to the pancreas and increases β-cell mass (p. 2022.03.24.485696). bioRxiv. https://doi.org/10.1101/2022.03.24.485696
  12. Ingram, K., Samson, S. C., Zewdu, R., Zitnay, R. G., Snyder, E. L., & Mendoza, M. C. (2022). NKX2-1 controls lung cancer progression by inducing DUSP6 to dampen ERK activity. Oncogene, 41(2), 293–300. https://doi.org/10.1038/s41388-021-02076-x
  13. Jensen, O., Trivedi, S., Meier, J. D., Fairfax, K. C., Hale, J. S., & Leung, D. T. (2022). A subset of follicular helper-like MAIT cells can provide B cell help and support antibody production in the mucosa. Science Immunology, 7(67), eabe8931. https://doi.org/10.1126/sciimmunol.abe8931
  14. Kaur, K., Mohammadpour, R., Ghandehari, H., Reilly, C. A., Paine, R., & Kelly, K. E. (2022). Effect of combustion particle morphology on biological responses in a Co-culture of human lung and macrophage cells. Atmospheric Environment, 284, 119194. https://doi.org/10.1016/j.atmosenv.2022.119194
  15. Kaur, K., Mohammadpour, R., Sturrock, A., Ghandehari, H., Reilly, C., Paine, R., & Kelly, K. E. (2022). Comparison of biological responses between submerged, pseudo-air-liquid interface, and air-liquid interface exposure of A549 and differentiated THP-1 co-cultures to combustion-derived particles. Journal of Environmental Science and Health, Part A, 1–12. https://doi.org/10.1080/10934529.2022.2083429
  16. Kidwell, C. U., Casalini, J. R., Pradeep, S., Scherer, S. D., Greiner, D., Johnson, J. S., Olson, G. S., Rutter, J., Welm, A. L., Zangle, T. A., & Roh-Johnson, M. (2021). Laterally transferred macrophage mitochondria act as a signaling source promoting cancer cell proliferation. bioRxiv. https://doi.org/10.1101/2021.08.10.455713
  17. Kursel, L. E., Cope, H. D., & Rog, O. (2021). Unconventional conservation reveals structure-function relationships in the synaptonemal complex. ELife, 10, e72061. https://doi.org/10.7554/eLife.72061
  18. LaBelle, S. A., Dinkins, S. S., Hoying, J. B., Budko, E. V., Rauff, A., Strobel, H. A., Lin, A. H., & Weiss, J. A. (2022). Matrix anisotropy promotes angiogenesis in a density-dependent manner. American Journal of Physiology-Heart and Circulatory Physiology, 322(5), H806–H818. https://doi.org/10.1152/ajpheart.00072.2022
  19. Lai, S.-C. A., Gundlapalli, H., Ekiz, H. A., Jiang, A., Fernandez, E., & Welm, A. L. (2021). Blocking Short-Form Ron Eliminates Breast Cancer Metastases through Accumulation of Stem-Like CD4+ T Cells That Subvert Immunosuppression. Cancer Discovery, 11(12), 3178–3197. https://doi.org/10.1158/2159-8290.CD-20-1172
  20. Lam, G., Beebe, K., & Thummel, C. S. (2022). A direct-drive GFP reporter for studies of tracheal development in Drosophila. Fly, 16(1), 105–110. https://doi.org/10.1080/19336934.2022.2030191
  21. Lin, Y., Perovanovic, J., Kong, Y., Igyarto, B. Z., Zurawski, S., Tantin, D., Zurawski, G., Bettini, M., & Bettini, M. L. (2022). Antibody-Mediated Targeting of a Hybrid-Insulin-Peptide Towards Neonatal Thymic Langerin+ Cells Enhances T Cell Central Tolerance and Delays Autoimmune Diabetes. Diabetes, db211069. https://doi.org/10.2337/db21-1069
  22. Liu, H., Gordon, S. G., & Rog, O. (2021). Heterologous synapsis in C. elegans is regulated by meiotic double-strand breaks and crossovers. Chromosoma, 130(4), 237–250. https://doi.org/10.1007/s00412-021-00763-y
  23. Marchetti, M., Zhang, C., & Edgar, B. A. (2021). An improved organ explant culture method reveals stem cell lineage dynamics in the adult Drosophila intestine. bioRxiv. https://doi.org/10.1101/2021.12.17.473114
  24. Mathew, B., Aoyagi, K. L., & Fisher, M. A. (2021). Yersinia pestis Lipopolysaccharide Remodeling Confers Resistance to a Xenopsylla cheopis Cecropin. ACS Infectious Diseases, 7(8), 2536–2545. https://doi.org/10.1021/acsinfecdis.1c00275
  25. McKenzie, A. I., Mahmassani, Z. S., Petrocelli, J. J., de Hart, N. M. M. P., Fix, D. K., Ferrara, P. J., LaStayo, P. C., Marcus, R. L., Rondina, M. T., Summers, S. A., Johnson, J. M., Trinity, J. D., Funai, K., & Drummond, M. J. (2022). Short-term exposure to a clinical dose of metformin increases skeletal muscle mitochondrial H2O2 emission and production in healthy, older adults: A randomized controlled trial. Experimental Gerontology, 163, 111804. https://doi.org/10.1016/j.exger.2022.111804
  26. Meng, F., Fleming, B. A., Jia, X., Rousek, A. A., Mulvey, M. A., & Ward, D. M. (2022). Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Advances, 6(6), 1692–1707. https://doi.org/10.1182/bloodadvances.2021005609
  27. Nicholson, R. J., Poss, A. M., Maschek, J. A., Cox, J. E., Hopkins, P. N., Hunt, S. C., Playdon, M. C., Holland, W. L., & Summers, S. A. (2021). Characterizing a Common CERS2 Polymorphism in a Mouse Model of Metabolic Disease and in Subjects from the Utah CAD Study. The Journal of Clinical Endocrinology & Metabolism, 106(8), e3098–e3109. https://doi.org/10.1210/clinem/dgab155
  28. Nie, X., Munyoki, S. K., Sukhwani, M., Schmid, N., Missel, A., Emery, B. R., DonorConnect, Stukenborg, J.-B., Mayerhofer, A., Orwig, K. E., Aston, K. I., Hotaling, J. M., Cairns, B. R., & Guo, J. (2022). Single-cell analysis of human testis aging and correlation with elevated body mass index. Developmental Cell, 57(9), 1160-1176.e5. https://doi.org/10.1016/j.devcel.2022.04.004
  29. Okada, M., Rajaram, K., Swift, R. P., Mixon, A., Maschek, J. A., Prigge, S. T., & Sigala, P. A. (2022). Critical role for isoprenoids in apicoplast biogenesis by malaria parasites. ELife, 11, e73208. https://doi.org/10.7554/eLife.73208
  30. Ost, K. S., O’Meara, T. R., Stephens, W. Z., Chiaro, T., Zhou, H., Penman, J., Bell, R., Catanzaro, J. R., Song, D., Singh, S., Call, D. H., Hwang-Wong, E., Hanson, K. E., Valentine, J. F., Christensen, K. A., O’Connell, R. M., Cormack, B., Ibrahim, A. S., Palm, N. W., … Round, J. L. (2021). Adaptive immunity induces mutualism between commensal eukaryotes. Nature, 596(7870), 114–118. https://doi.org/10.1038/s41586-021-03722-w
  31. Øvrebø, J. I., Bradley-Gill, M.-R., Zielke, N., Kim, M., Marchetti, M., Bohlen, J., Lewis, M., van Straaten, M., Moon, N.-S., & Edgar, B. A. (2022). Translational control of E2f1 regulates the Drosophila cell cycle. Proceedings of the National Academy of Sciences, 119(4), e2113704119. https://doi.org/10.1073/pnas.2113704119
  32. Petrocelli, J. J., Mahmassani, Z. S., Fix, D. K., Montgomery, J. A., Reidy, P. T., McKenzie, A. I., de Hart, N. M., Ferrara, P. J., Kelley, J. J., Eshima, H., Funai, K., & Drummond, M. J. (2021). Metformin and leucine increase satellite cells and collagen remodeling during disuse and recovery in aged muscle. The FASEB Journal, 35(9). https://doi.org/10.1096/fj.202100883R
  33. Rheinemann, L., Downhour, D. M., Bredbenner, K., Mercenne, G., Davenport, K. A., Schmitt, P. T., Necessary, C. R., McCullough, J., Schmitt, A. P., Simon, S. M., Sundquist, W. I., & Elde, N. C. (2021). RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis. Cell, 184(21), 5419-5431.e16. https://doi.org/10.1016/j.cell.2021.09.008
  34. Tamamouna, V., Rahman, M. M., Petersson, M., Charalambous, I., Kux, K., Mainor, H., Bolender, V., Isbilir, B., Edgar, B. A., & Pitsouli, C. (2021). Remodelling of oxygen-transporting tracheoles drives intestinal regeneration and tumorigenesis in Drosophila. Nature Cell Biology, 23(5), 497–510. https://doi.org/10.1038/s41556-021-00674-1
  35. Van Deren, D. A., De, S., Xu, B., Eschenbacher, K. M., Zhang, S., & Capecchi, M. R. (2022). Defining the Hoxb8 cell lineage during murine definitive hematopoiesis. Development, 149(8), dev200200. https://doi.org/10.1242/dev.200200
  36. Wenzel, D. M., Mackay, D. R., Skalicky, J. J., Paine, E. L., Miller, M. S., Ullman, K. S., & Sundquist, W. I. (2022). Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. bioRxiv. https://doi.org/10.1101/2022.02.09.477148
  37. Wojtalewicz, S., Vizmeg, J., Erickson, S., Lade, C., Shea, J., Sant, H., Magda, J., Gale, B., Agarwal, J., & Davis, B. (2022). Evaluating the influence of particle morphology and density on the viscosity and injectability of a novel long-acting local anesthetic suspension. Journal of Biomaterials Applications, 8853282221106486. https://doi.org/10.1177/08853282221106486
  38. Xue, Q., Varady, S. R. S., Waddell, T. Q. A., Carrington, J., & Roh-Johnson, M. (2022). Focal adhesion-based cell migration is differentially regulated in vivo versus in vitro by Paxillin phosphorylation. bioRxiv. https://doi.org/10.1101/2022.03.02.482703
  39. Yang, G., Parker, E., Gorsi, B., Liebowitz, M., Maguire, C., King, J. B., Coon, H., Lopez-Larson, M., Anderson, J., Yandell, M., & Shcheglovitov, A. (2022). Neurite outgrowth deficits caused by rare PLXNB1 mutation in pediatric bipolar disorder [Preprint]. Psychiatry and Clinical Psychology. https://doi.org/10.1101/2022.05.06.22274499
  40. Zhang, P., Katzaroff, A. J., Buttitta, L. A., Ma, Y., Jiang, H., Nickerson, D. W., Øvrebø, J. I., & Edgar, B. A. (2021). The Krüppel-like factor Cabut has cell cycle regulatory properties similar to E2F1. Proceedings of the National Academy of Sciences of the United States of America, 118(7), e2015675118. https://doi.org/10.1073/pnas.2015675118
  41. Zhao, H., Pomicter, A. D., Eiring, A. M., Franzini, A., Ahmann, J., Hwang, J.-Y., Senina, A., Helton, B., Iyer, S., Yan, D., Khorashad, J. S., Zabriskie, M. S., Agarwal, A., Redwine, H. M., Bowler, A. D., Clair, P. M., McWeeney, S. K., Druker, B. J., Tyner, J. W., … Deininger, M. W. (2022). MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis. Blood, 139(5), 761–778. https://doi.org/10.1182/blood.2021011802


  1. Ahmed, S., Maldera, J., Krunic, D., Paiva-Silva, G., Penalva, C., Teleman, A., & Edgar, B. (2020). Fitness trade-offs incurred by ovary-to-gut steroid signalling in Drosophila. Nature, 584(7821), 415-+. doi:10.1038/s41586-020-2462-y
  2. Auer, T. O., Khallaf, M. A., Silbering, A. F., Zappia, G., Ellis, K., Álvarez-Ocaña, R., Arguello, J. R., Hansson, B. S., Jefferis, G. S. X.E, Caron, S. J. C., Knaden, M., & Benton, R. (2020). Olfactory receptor and circuit evolution promote host specialization. Nature, 579(7799), 402-408. doi:10.1038/s41586-020-2073-7
  3. Bell, L. A., Wallis, G. J., & Wilcox, K. S. (2020). Reactivity and increased proliferation of NG2 cells following central nervous system infection with Theiler’s murine encephalomyelitis virus. J Neuroinflammation, 17(1), 369. doi:10.1186/s12974-020-02043-5
  4. Bhatlekar, S., Manne, B. K., Basak, I., Edelstein, L. C., Tugolukova, E., Stoller, M. L., Cody, M. J., Morley, S. C., Nagalla, S., Weyrich, A. S., Rowley, J. W., O’Connell, R. M.,Rondina, M. T., Campbell, R. A., & Bray, P. F. (2020). miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood, 136(15), 1760-1772. doi:10.1182/blood.2020005230
  5. Davis, B., Erickson, S., Wojtalewicz, S., Simpson, A., Metcalf, C., Sant, H., Shea, J., Gale, B., & Agarwal, J. (2020). Entrapping bupivacaine-loaded emulsions in a crosslinked-hydrogel increases anesthetic effect and duration in a rat sciatic nerve block model. International Journal of Pharmaceutics, 588. doi:10.1016/j.ijpharm.2020.119703
  6. de Hart, N. M. M.P.,Mahmassani, Z. S.,Reidy, P. T.,Kelley, J. J.,McKenzie, A. I.,Petrocelli, J. J.,Bridge, M. J.,Baird, L. M.,Bastian, E. D.,Ward, L. S.,Howard, M. T., & Drummond, M. J. (2021). Acute Effects of Cheddar Cheese Consumption on Circulating Amino Acids and Human Skeletal Muscle. Nutrients, 13(2). doi:10.3390/nu13020614
  7. Derksen, A., Shih, H.-Y., Forget, D., Darbelli, L., Tran, L. T., Poitras, C., . . . Bernard, G. (2021). Variants in LSM7 impair LSM complexes assembly, neurodevelopment in zebrafish and may be associated with an ultra-rare neurological disease. Human Genetics and Genomics Advances, 2(3), 100034. doi:10.1016/j.xhgg.2021.100034
  8. Dong, Z. M., Lin, E., Wechsler, M. E., Weller, P. F., Klion, A. D., Bochner, B. S., Delker, D. A., Hazel, M. W., Fairfax, K., Khoury, P., Akuthota, P., Merkel, P. A., Dyer, A. M., Langford, C., Specks, U., Gleich, G. J., Chinchilli, V. M., Raby, B., Yandell, M., & Clayton, F.  (2020). Pulmonary Eosinophilic Granulomatosis with Polyangiitis Has IgG4 Plasma Cells and Immunoregulatory Features. Am J Pathol, 190(7), 1438-1448. doi:10.1016/j.ajpath.2020.03.005
  9. Eshima, H., Siripoksup, P., Mahmassani, Z., Johnson, J., Ferrara, P., Verkerke, A., Salcedo, A., Drummond, M.J., & Funai, K. (2020). Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice. Journal of Applied Physiology, 129(1), 124-132. doi:10.1152/japplphysiol.00456.2019
  10. Ferrara, P. J., Rong, X., Maschek, J. A., Verkerke, A. R., Siripoksup, P., Song, H., Green, T. D., Krishnan, K. C., Johnson, J. M., Turk, J., Houmard, J. A., Lusis, A. J., Drummond, M. J., McClung, J. M., Cox, J. E., Shaikh, S. R., Tontonoz, P., Holland, W. L., & Funai, K. (2021). Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J Clin Invest, 131(8). doi:10.1172/JCI135963
  11. Ferrari, L., Pei, J., Zickella, M., Rey, C., Zickella, J., Ramirez, A., & Taylor, N. (2021). D2 Receptors in the Periaqueductal Gray/Dorsal Raphe Modulate Peripheral Inflammatory Hyperalgesia via the Rostral Ventral Medulla. Neuroscience, 463, 159-173. doi:10.1016/j.neuroscience.2021.03.035
  12. Grow, E. J., Weaver, B. D., Smith, C. M., Guo, J., Stein, P., Shadle, S. C., Hendrickson, P. G., Johnson, N. E., Butterfield, R. J., Menafra, R., Kloet, S. L., van der Maarel, S. M., Williams, C. J., & Cairns, B. R. (2021). p53 convergently activates Dux/DUX4 in embryonic stem cells and in facioscapulohumeral muscular dystrophy cell models. Nat Genet. doi:10.1038/s41588-021-00893-0
  13. Hoffman, L. M., Smith, M. A., Jensen, C. C., Yoshigi, M., Blankman, E., Ullman, K. S., & Beckerle, M. C. (2020). Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol Biol Cell, 31(16), 1774-1787. doi:10.1091/mbc.E19-01-0027
  14. Keefe, M. D., Soderholm, H. E., Shih, H. Y., Stevenson, T. J., Glaittli, K. A., Bowles, D. M., Scholl, E., Colby, S., Merchant, S., Hsu, E. W., & Bonkowsky, J. L.  (2020). Vanishing white matter disease expression of truncated EIF2B5 activates induced stress response. Elife, 9. doi:10.7554/eLife.56319
  15. Lewis, M. (2021). Signaling Pathway Regulation of Transcription Factor E2F1 Alters Cell Cycle Progression in Drosophila Midgut. In B. Edgar & J. I. Øvrebø (Eds.), (Vol. 21). Undergraduate Research Journal: University of Utah.
  16. Li, J., Mahoney, B. D., Jacob, M. S., & Caron, S. J. C. (2020). Visual Input into the Drosophila melanogaster Mushroom Body. Cell Rep, 32(11), 108138. doi:10.1016/j.celrep.2020.108138
  17. Lyu, Y., Verma, V. K., Lee, Y., Taleb, I., Badolia, R., Shankar, T. S., Kyriakopoulos, C. P., Selzman, C. H., Caine, W., Alharethi, R., Navankasattusas, S., Seidel, T., Drakos, S. G., & Sachse, F. B. (2021). Remodeling of t-system and proteins underlying excitation-contraction coupling in aging versus failing human heart. NPJ Aging Mech Dis, 7(1), 16. doi:10.1038/s41514-021-00066-7
  18. Mahmassani, Z. S., McKenzie, A. I., Petrocelli, J. J., de Hart, N. M., Reidy, P. T., Fix, D. K., Ferrara, P. J., Funai, K., & Drummond, M. J. (2021). Short-term metformin ingestion by healthy older adults improves myoblast function. Am J Physiol Cell Physiol, 320(4), C566-C576. doi:10.1152/ajpcell.00469.2020
  19. Mathew, B., Aoyagi, K. L., & Fisher, M. A. (2021). Yersinia pestis lipopolysaccharide remodeling confers resistance to a Xenopsylla cheopis cecropin. bioRxiv, 2021.2003.2012.435208. doi:10.1101/2021.03.12.435208
  20. Moriwaki, M., & Welt, C. K. (2021). PRL Mutation Causing Alactogenesis: Insights Into Prolactin Structure and Function Relationships. J Clin Endocrinol Metab, 106(8), e3021-e3026. doi:10.1210/clinem/dgab201
  21. Okada, M., Guo, P., Nalder, S. A., & Sigala, P. A. (2020). Doxycycline has distinct apicoplast-specific mechanisms of antimalarial activity. Elife, 9. doi:10.7554/eLife.60246
  22. Russell, K. L., Downie, J. M., Gibson, S. B., Tsetsou, S., Keefe, M. D., Duran, J. A., Figueroa, K. P., Bromberg, M. B., Murtaugh, L. C., Bonkowsky, J. L., Pulst, S. M., & Jorde, L. B. (2021). Pathogenic Effect of TP73 Gene Variants in People With Amyotrophic Lateral Sclerosis. Neurology. doi:10.1212/WNL.0000000000012285
  23. Strobel, H. A., LaBelle, S. A., Krishnan, L., Dale, J., Rauff, A., Poulson, A. M., Bader, N., Beare, J. E., Aliaj, K., Weiss, J. A., & Hoying, J. B. (2020). Stromal Cells Promote Neovascular Invasion Across Tissue Interfaces. Front Physiol, 11, 1026. doi:10.3389/fphys.2020.01026
  24. Tamamouna, V, Rahman, MM, Petersson, M, Charalambous, I, Kux, K, Mainor, H, Bolender, V, Isbilir, B, Edgar, BA, & Pitsouli, C. (2021). Remodelling of oxygen-transporting tracheoles drives intestinal regeneration and tumorigenesis in Drosophila. Nature Cell Biology, 23(5), 497-+. doi:10.1038/s41556-021-00674-1
  25. Wike, C. L., Guo, Y., Tan, M., Nakamura, R., Shaw, D. K., Díaz, N., Whittaker-Tademy, A. F., Durand, N. C., Aiden, E. L., Vaquerizas, J. M., Grunwald, D., Takeda, H., & Cairns, B. R.  (2021). Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Res, 31(6), 981-994. doi:10.1101/gr.269860.120
  26. Zhang, P., Katzaroff, A. J., Buttitta, L. A., Ma, Y., Jiang, H., Nickerson, D. W., Øvrebø, J. I., & Edgar, B. A. (2021). The Krüppel-like factor Cabut has cell cycle regulatory properties similar to E2F1. Proc Natl Acad Sci U S A, 118(7). doi:10.1073/pnas.2015675118


  1. Deshpande, I., Liang, J., Hedeen, D., Roberts, K. J., Zhang, Y., Ha, B., Manglik, A. (2019). Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature, 571(7764), 284-288. doi:10.1038/s41586-019-1355-4
  2. Dong, Z. M., Lin, E., Wechsler, M. E., Weller, P. F., Klion, A. D., Bochner, B. S., Clayton, F. (2020). Pulmonary Eosinophilic Granulomatosis with Polyangiitis Has IgG4 Plasma Cells and Immunoregulatory Features. Am J Pathol, 190(7), 1438-1448. doi:10.1016/j.ajpath.2020.03.005
  3. Feng, H., Hockin, M., Zhang, S., Capecchi, M., Gale, B., & Sant, H. (2020). Enhanced chromosome extraction from cells using a pinched flow microfluidic device. Biomed Microdevices, 22(2), 25. doi:10.1007/s10544-020-0477-7
  4. Feng, H., Magda, J. J., & Gale, B. K. (2019). Viscoelastic second normal stress difference dominated multiplestream particle focusing in microfluidic channels. Appl Phys Lett, 115(26), 263702. doi:10.1063/1.5129281
  5. Gandelman, M., Dansithong, W., Figueroa, K. P., Paul, S., Scoles, D. R., & Pulst, S. M. (2020). Staufen 1 amplifies proapoptotic activation of the unfolded protein response. Cell Death Differ. doi:10.1038/s41418-020-0553-9
  6. Guo, P., Nalder, S.-a., Okada, M., & Sigala, P. A. (2020). Doxycycline has Distinct Apicoplast-Specific Mechanisms of Antimalarial Activity. bioRxiv, 2020.2006.2011.146407. doi:10.1101/2020.06.11.146407
  7. Hanak, T. J., Libbey, J. E., Doty, D. J., Sim, J. T., DePaula-Silva, A. B., & Fujinami, R. S. (2019). Positive modulation of mGluR5 attenuates seizures and reduces TNF-alpha(+) macrophages and microglia in the brain in a murine model of virus-induced temporal lobe epilepsy. Exp Neurol, 311, 194-204.
  8. Hoffman, L. M., Smith, M. A., Jensen, C. C., Yoshigi, M., Blankman, E., Ullman, K. S., & Beckerle, M. C. (2020). Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol Biol Cell, 31(16), 1774-1787. doi:10.1091/mbc.E19-01-0027
  9. Kim, H. S., Neugebauer, J., McKnite, A., Tilak, A., & Christian, J. L. (2019). BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. Elife, 8. doi:10.7554/eLife.48872
  10. Lim, K., Sima, M., Stewart, R. J., & Minteer, S. D. (2020). Direct bioelectrocatalysis by redox enzymes immobilized in electrostatically condensed oppositely charged polyelectrolyte electrode coatings. Analyst, 145(4), 1250-1257. doi:10.1039/c9an02168j
  11. Mahmassani, Z. S., Reidy, P. T., McKenzie, A. I., Petrocelli, J. J., Matthews, O., de Hart, N. M., Drummond, M. J. (2020). Absence of MyD88 from Skeletal Muscle Protects Female Mice from Inactivity-Induced Adiposity and Insulin Resistance. Obesity (Silver Spring), 28(4), 772-782. doi:10.1002/oby.22759
  12. McKenzie, A. I., Reidy, P. T., Nelson, D. S., Mulvey, J. L., Yonemura, N. M., Petrocelli, J. J., Drummond, M. J. (2020). Pharmacological inhibition of TLR4 ameliorates muscle and liver ceramide content after disuse in previously physically active mice. Am J Physiol Regul Integr Comp Physiol, 318(3), R503-R511. doi:10.1152/ajpregu.00330.2019
  13. Reidy, P. T., Yonemura, N. M., Madsen, J. H., McKenzie, A. I., Mahmassani, Z. S., Rondina, M. T., Drummond, M. J. (2019). An accumulation of muscle macrophages is accompanied by altered insulin sensitivity after reduced activity and recovery. Acta Physiol (Oxf), 226(2), e13251. doi:10.1111/apha.13251


  1. Reidy, P. T., McKenzie, A. I., Mahmassani, Z. S., Petrocelli, J. J., Nelson, D. B., Lindsay, C. C., Drummond, M. J. (2019). Aging impairs mouse skeletal muscle macrophage polarization and muscle-specific abundance during recovery from disuse. Am J Physiol Endocrinol Metab, 317(1), E85-E98. doi:10.1152/ajpendo.00422.2018
  2. Samson, S. C., Elliott, A., Mueller, B. D., Kim, Y., Carney, K. R., Bergman, J. P., Mendoza, M. C. (2019). p90 ribosomal S6 kinase (RSK) phosphorylates myosin phosphatase and thereby controls edge dynamics during cell migration. J Biol Chem, 294(28), 10846-10862. doi:10.1074/jbc.RA119.007431
  3. Yoo, J. H., Brady, S. W., Acosta-Alvarez, L., Rogers, A., Peng, J., Sorensen, L. K., Grossmann, A. H. (2019). The Small GTPase ARF6 Activates PI3K in Melanoma to Induce a Prometastatic State. Cancer Res, 79(11), 2892-2908. doi:10.1158/0008-5472.CAN-18-3026
  4. Zhang, P., Holowatyj, A. N., Roy, T., Pronovost, S. M., Marchetti, M., Liu, H., Edgar, B. A. (2019). An SH3PX1Dependent Endocytosis-Autophagy Network Restrains Intestinal Stem Cell Proliferation by Counteracting EGFR-ERK Signaling. Dev Cell, 49(4), 574-589 e575. doi:10.1016/j.devcel.2019.03.029


  1. Abdul-Wajid, S., Demarest, B. L., & Yost, H. J. (2018). Loss of embryonic neural crest derived cardiomyocytes causes adult onset hypertrophic cardiomyopathy in zebrafish. Nat Commun, 9(1), 4603. doi:10.1038/s41467-018-07054-8
  2. Chavez, D. R., Snow, A. K., Smith, J. R., & Stanfield, G. M. (2018). Soma-germ line interactions and a role for muscle in the regulation of C. elegans sperm motility. Development, 145(24). doi:10.1242/dev.167734
  3. Klatt Shaw, D., Gunther, D., Jurynec, M. J., Chagovetz, A. A., Ritchie, E., & Grunwald, D. J. (2018). Intracellular Calcium Mobilization Is Required for Sonic Hedgehog Signaling. Dev Cell, 45(4), 512-525 e515. doi:10.1016/j.devcel.2018.04.013
  4. Mimche, P. N., Lee, C. M., Mimche, S. M., Thapa, M., Grakoui, A., Henkemeyer, M., & Lamb, T. J. (2018). EphB2 receptor tyrosine kinase promotes hepatic fibrogenesis in mice via activation of hepatic stellate cells. Sci Rep, 8(1), 2532. doi:10.1038/s41598-018-20926-9
  5. Reidy, P. T., McKenzie, A. I., Mahmassani, Z., Morrow, V. R., Yonemura, N. M., Hopkins, P. N., Drummond, M. J. (2018). Skeletal muscle ceramides and relationship with insulin sensitivity after 2 weeks of simulated sedentary behaviour and recovery in healthy older adults. J Physiol, 596(21), 5217-5236. doi:10.1113/JP276798
  6. Sefton, E. M., Gallardo, M., & Kardon, G. (2018). Developmental origin and morphogenesis of the diaphragm, an essential mammalian muscle. Dev Biol, 440(2), 64-73. doi:10.1016/j.ydbio.2018.04.010
  7. Zitnay, J. L., Reese, S. P., Tran, G., Farhang, N., Bowles, R. D., & Weiss, J. A. (2018). Fabrication of dense anisotropic collagen scaffolds using biaxial compression. Acta Biomater, 65, 76-87. doi:10.1016/j.actbio.2017.11.017
  8. Zitnay, J. L., & Weiss, J. A. (2018). Load transfer, damage, and failure in ligaments and tendons. J Orthop Res, 36(12), 3093-3104. doi:10.1002/jor.24134

Upcoming events will be announced in our Twitter feed and through email.  To subscribe to our email list, visit https://www.lists.utah.edu/wws/info/uofumicroscopy, and click on subscribe to provide your email address.


This same link can be used to unsubscribe or change your preferred email address.

HSC Imaging Core Newsletters

To subscribe to our newsletter, visit https://www.lists.utah.edu/wws/info/uofumicroscopy, and click on subscribe to provide your email address.

This same link can be used to unsubscribe or change your preferred email address.


May 2023


March 2023


August 2022


February 2021


Cell Imaging Core

Email: support.cellimaging@cores.utah.edu

Phone: 801-587-7964


Xiang Wang Ph.D., Director


Michael J. Bridge Ph.D., Research Associate




Bill James, Lab Specialist


Office Locations

HSC – Health Science Center (585) 

Office Phone Number: 801-587-7964

Office Room Numbers:

Room 55 – Michael Bridge

Room 48a – Xiang Wang

Room 48e – Bill James


HCI – Huntsman Cancer Institute (555)

Office Phone Number: 801-585-0106

Office Room Number: 1460


CSC – Crocker Science Center (5)

Office Phone Number: 801-587-0313

Office Room Number: 30

Oversight Committee

Bruce Edgar, Professor, Oncological Sciences


James Cox, HSC Cores Director
Alex Shcheglovitov, Assistant Professor, Neurobiology and Anatomy
Mark Smith, Research Assistant Professor, Oncological Sciences
Markus Babst, Professor, Biological Sciences
Michelle Mendoza, Associate Professor, Oncological Sciences
Minna Roh-Johnson, Assistant Professor, Dept. of Biochemistry
Sophie Caron, Assistant Professor, Biological Sciences
Gabrielle Kardon, Professor, Human Genetics