Cores Management Systems

Core Facilities

Affiliated Sites / University Resources


Home Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance spectroscopy (NMR) is a powerful technique to determine chemical structure, relative stereochemistry, dynamics and rate constants, chemical reaction rates, binding and binding constants, molecule diffusion rate constants, and 3D structure. Natural products, synthetic intermediates and products, drugs, lipids, sugars, small peptides and nucleic acids are amenable to NMR using one- and two-dimensional (2D) methods and NMR active isotopes (1H,31P,19F,13C). NMR of large biomolecules requires multi-dimensional (2D, 3D and 4D) methods combined with naturally abundant isotopes (1H,31P,19F; all near 100% at natural abundance), and isotopically enriched (15N,13C,2H; using isotope-labeled growth medium and molecular biology) to probe the structure, dynamics, and biochemistry of proteins, RNA, DNA, and carbohydrates with NMR. Select NMR applications are listed below:

  • Determine chemical structures of small molecules including natural products, synthetic intermediates and products, drugs, sugars, peptides, RNA and DNA, and carbohydrates.
  • Measure scalar coupling constants
  • Measure interproton distances
  • Determine relative stereochemistry at chiral centers
  • Determine 3D structure of small molecules
  • Determine concentration of analytes
  • Determine translational diffusion rate constants 
  • Measure ligand equilibrium binding constant KD
  • Measure chemical reaction rate constants and kinetic parameters 
  • Determine 3D structures of proteins, protein complexes, DNA, RNA, and others
  • Probe protein folding in vitro and in vivo
  • Metabolomics using NMR
  • Map ligand binding sites on protein surface
  • SAR (Structure-Activity Relationship) by NMR; Discovery of protein binding ligands
  • in-cell NMR

The Nuclear Magnetic Resonance spectroscopy (NMR) core gives the University of Utah research community access to this powerful technique. NMR service is also extended to outside regional academic institutions, not-for-profit startup companies, and for-profit companies. The core provides basic (required) and advanced training for NMR users. Formal NMR spectroscopy tutorials are also available for those interested. Basic training, advanced training, and NMR tutorial instruction is led by Jack Skalicky, Research Associate Professor of Biochemistry and Director of the HSC NMR facility. The major instrumentation of this core facility is listed below.

  • Varian MERCURY 400 MHz: Equipped with Quad probe (1H,19F,31P,13C,) for 1D NMR of small molecules, located in Rm2 Skaggs Hall.
  • Varian INOVA 500 MHz: High sensitivity HX (1H, X=low gyromagnetic ratio) probe for direct detection of nuclei with low gyromagnetic ratio nuclei. HCN probe (1H,13C,15N) for 2D NMR of small molecules and 3D/4D triple resonance NMR for biomolecules. Located at Rm50 BPRB. Proton signal/noise is 900/1.
  • Varian INOVA 600 MHz: High sensitivity HCN (1H,13C,15N) cryogenic probe ideal for 2D of natural products. Ideal for triple resonance 2D/3D/4D experiments for biomolecules.Located at Rm 50 BPRB. Proton signal/noise is 4800/1.
  • Denver Consortium/Varian DirectDrive 900 MHz. We are also full members of the Rocky Mountain NMR consortium and have access to a state-of-art Varian DirectDrive900 housed in Denver, Colorado. Ideal for TROSY-based triple resonance and NOESY experiments for structure determinations. Proton signal/noise is 7500/1.

Service Rates

Requesting Services

Existing users may login directly to the Resource Scheduling System to schedule or order services. This system is cores-wide and uses University of Utah uNID authentication.

Jack Skalicky

Facility Director


Contact Us

Please enable JavaScript in your browser to complete this form.

Hours of Operation

9:00 am to 5:00 pm
Monday - Friday

Recent Mentions

  1. Almomen, A., Alsaleh, N. B., El-Toni, A. M., EL-Mahrouky, M. A., Alhowyan, A. A., Alkholief, M., Alshamsan, A., Khurana, N., and Ghandehari, H. (2023) In Vitro Safety Assessment of In-House Synthesized Titanium Dioxide Nanoparticles: Impact of Washing and Temperature Conditions. International Journal of Molecular Sciences 24, 9966
  2. Ashkarran, A. A., Gharibi, H., Grunberger, J. W., Saei, A. A., Khurana, N., Mohammadpour, R., Ghandehari, H., and Mahmoudi, M. (2023) Sex-Specific Silica Nanoparticle Protein Corona Compositions Exposed to Male and Female BALB/c Mice Plasmas. ACS Bio & Med Chem Au 3, 62-73
  3. Chen, F., Sun, J., Wang, Y., Grunberger, J. W., Zheng, Z., Khurana, N., Xu, X., Zhou, X., Ghandehari, H., and Zhang, J. (2022) Silica nanoparticles induce ovarian granulosa cell apoptosis via activation of the PERK-ATF4-CHOP-ERO1α pathway-mediated IP3R1-dependent calcium mobilization. Cell Biol Toxicol
  4. Clauss, Z. S., Meudom, R., Su, B., VandenBerg, M. A., Saini, S. S., Webber, M. J., Chou, D. H., and Kramer, J. R. (2023) Supramolecular Protein Stabilization with Zwitterionic Polypeptide-Cucurbit[7]uril Conjugates. Biomacromolecules 24, 481-488
  5. Cong, Y., Scesa, P. D., and Schmidt, E. W. (2022) AgeMTPT, a Catalyst for Peptide N-Terminal Modification. ACS Synth Biol 11, 3699-3705
  6. Detwiler, R. E., and Kramer, J. R. (2022) Preparation and applications of artificial mucins in biomedicine. Curr Opin Solid State Mater Sci 26
  7. Griswold, E., Cappello, J., and Ghandehari, H. (2022) Silk-elastinlike protein-based hydrogels for drug delivery and embolization. Adv Drug Deliv Rev 191, 114579
  8. Grunberger, J. W., and Ghandehari, H. (2023) Layer-by-Layer Hollow Mesoporous Silica Nanoparticles with Tunable Degradation Profile. Pharmaceutics 15
  9. Jensen, M. M., Hatlevik, Ø., Steinhauff, D. D., Griswold, E. D., Wei, X., Isaacson, K. J., Barber, Z. B., Huo, E., Taussky, P., Jedrzkiewicz, J., Cappello, J., Cheney, D., and Ghandehari, H. (2022) Protein-based polymer liquid embolics for cerebral aneurysms. Acta Biomater 151, 174-182
  10. Kaur, K., Mohammadpour, R., Ghandehari, H., Reilly, C. A., Paine, R., 3rd, and Kelly, K. E. (2022) Effect of combustion particle morphology on biological responses in a Co-culture of human lung and macrophage cells. Atmos Environ (1994)284
  11. Khurana, N., Babajanian, E., McCrary, H., Pulsipher, A., Ghandehari, H., Alt, J. A., and Cannon, R. B. (2023) Vascular permeability in HPV+ oropharyngeal cancers aids in fluorescent image-guided transoral robotic surgery using indocyanine green. Head Neck 45, 1728-1740
  12. Khurana, N., Sünner, T., Hubbard, O., Imburgia, C., Stoddard, G. J., Yellepeddi, V., Ghandehari, H., and Watt, K. M. (2023) Micellar Encapsulation of Propofol Reduces its Adsorption on Extracorporeal Membrane Oxygenator (ECMO) Circuit. Aaps j 25, 52
  13. Kim, M. C., Winter, J. M., Cullum, R., Smith, A. J., and Fenical, W. (2023) Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium. Mar Drugs 21
  14. Kohout, V. R., Wardzala, C. L., and Kramer, J. R. (2022) Synthesis and biomedical applications of mucin mimic materials. Adv Drug Deliv Rev 191, 114540
  15. Kohout, V. R., Wardzala, C. L., and Kramer, J. R. (2023) Mirror Image Mucins and Thio Mucins with Tunable Biodegradation. J Am Chem Soc
  16. McCullough, B. S., Wang, H., and Barrios, A. M. (2022) Inhibitor Screen Identifies Covalent Inhibitors of the Protein Histidine Phosphatase PHPT1. ACS Med Chem Lett 13, 1198-1201
  17. Montoya, A. L., Glavatskikh, M., Halverson, B. J., Yuen, L. H., Schüler, H., Kireev, D., and Franzini, R. M. (2023) Combining pharmacophore models derived from DNA-encoded chemical libraries with structure-based exploration to predict Tankyrase 1 inhibitors. European Journal of Medicinal Chemistry 246, 114980
  18. Nervig, C. S., Hatch, S. T., and Owen, S. C. (2022) Complementation Dependent Enzyme Prodrug Therapy Enables Targeted Activation of Prodrug on HER2-Positive Cancer Cells. ACS Medicinal Chemistry Letters 13, 1769-1775
  19. Nickel, G. A., and Diehl, K. L. (2023) Chemical Biology Approaches to Identify and Profile Interactors of Chromatin Modifications. ACS Chem Biol 18, 1014-1026
  20. Sarkar, S., Gu, W., and Schmidt, E. W. (2022) Applying Promiscuous RiPP Enzymes to Peptide Backbone N-Methylation Chemistry. ACS Chem Biol 17, 2165-2178
  21. Scesa, P. D., Lin, Z., and Schmidt, E. W. (2022) Ancient defensive terpene biosynthetic gene clusters in the soft corals. Nat Chem Biol 18, 659-663
  22. Schmidt, E. W., and Lin, Z. (2022) Translating Marine Symbioses toward Drug Development. mBio 13, e0249922
  23. Subrahmanyam, N., Yathavan, B., Kessler, J., Yu, S. M., and Ghandehari, H. (2023) HPMA copolymer-collagen hybridizing peptide conjugates targeted to breast tumor extracellular matrix. J Control Release 353, 278-288
  24. Subrahmanyam, N., Yathavan, B., Yu, S. M., and Ghandehari, H. (2023) Targeting Intratibial Osteosarcoma Using Water-Soluble Copolymers Conjugated to Collagen Hybridizing Peptides. Mol Pharm 20, 1670-1680
  25. Wang, H., Gaston, R., Jr., Ahmed, K. T., Dudley, G. B., and Barrios, A. M. (2023) Derivatives of the Fungal Natural Product Illudalic Acid Inhibit the Activity of Protein Histidine Phosphatase PHPT1. ChemMedChem, e202300187
  26. Wardzala, C. L., Clauss, Z. S., and Kramer, J. R. (2022) Principles of glycocalyx engineering with hydrophobic-anchored synthetic mucins. Front Cell Dev Biol 10, 952931
  27. Wenzel, D. M., Mackay, D. R., Skalicky, J. J., Paine, E. L., Miller, M. S., Ullman, K. S., and Sundquist, W. I. (2022) Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. Elife 11
  28. Yathavan, B., Ellis, A., Jedrzkiewicz, J., Subrahmanyam, N., Khurana, N., Pulsipher, A., Alt, J. A., and Ghandehari, H. (2023) Systemic administration of budesonide in pegylated liposomes for improved efficacy in chronic rhinosinusitis. J Control Release 360, 274-284
  29. Zhang, P., Wu, G., Heard, S. C., Niu, C., Bell, S. A., Li, F., Ye, Y., Zhang, Y., and Winter, J. M. (2022) Identification and Characterization of a Cryptic Bifunctional Type I Diterpene Synthase Involved in Talaronoid Biosynthesis from a Marine-Derived Fungus. Org Lett 24, 7037-7041
  30. Zheng, Z., Zuo, W., Ye, R., Grunberger, J. W., Khurana, N., Xu, X., Ghandehari, H., and Chen, F. (2023) Silica Nanoparticles Promote Apoptosis in Ovarian Granulosa Cells via Autophagy Dysfunction. Int J Mol Sci 24

Citing Our Facility


We would like to thank you for acknowledging the our facility. This recognition allows us to highlight the impact of your work and demonstrates the important contributions of our facility makes to research across the University of Utah. The recognition our core receives from your acknowledgments also aids in receiving grants and further funding for equipment and services we can provide to our users.

Self-Run Services / Instrumentation Usage:

In published papers that used instruments at our facility and notably involved staff members please use the following format:

We acknowledge (facility name) at the University of Utah for use of equipment (insert instrument/service details here), and thank (insert any notable staff member – if desired) for their assistance.

Assisted Services:

In published papers where a staff member assisted you in addition to the requested services please use the following format:

We acknowledge (facility name) at the University of Utah for use of equipment (insert instrument/service details here), and thank (insert staff member-required) for their assistance in (service provided).


For publications resulting from collaborations that assisted with the methodologies, planning process and execution of your experiment in addition to equipment usage we require Co-author attribution on your publication for our facility and any staff members who provided substantial contributions to the originating project.